India Kepanasan , Indonesia apakah mungkin . . . .

8 Juni 2015
Cuaca Panas Apakah Bisa Menyerempet Ke Indonesia?? ( http://masurai.com/ )

Cuaca Panas Apakah Bisa Menyerempet Ke Indonesia?? ( http://masurai.com/ )

Beberapa minggu ini efek cuaca panas yang menyebabkan banyaknya orang yang meninggal di India menjadi berita utama disejumlah chanel berita baik media surat kabar dan dunia maya. Lalu apa penyebab India mengalami cuaca panas yang ekstrem. Menurut Kepala Bidang Informasi Meteorologi Publik BMKG, A. Fachri Radjab, penyebab utama fenomena ini adalah terjadinya perluasan pola musim panas di India. Suhu udara naik sekitar 5 derajat celcius dari suhu yang seharusnya. Ketika melewati permukaan, suhu menyebar dan bertambah panas. Pada dasarnya aliran udara panas adalah sebuah pola musim panas yang meluas (extended summer), diindikasikan dengan suhu udara sekitar 5 derajat celcius di atas rata-rata suhu maksimumnya. Ketika aliran udara panas ini melewati permukaan daratan yang luas, maka terjadi interaksi yang pada akhirnya memperkuat aliran udara panas ini seperti yang terjadi di India.

Berikut adalah faktor-faktor penyebab perubahan cuaca ekstrem

A Faktor pemanasan laut
Memanasnya suhu muka laut dan tidak terjadinya musim kemarau pada tahun ini merupakan kondisi penyimpangan yang tergolong paling ekstrem pada data pemantauan cuaca yang pernah dilakukan di Indonesia. Pemantauan kondisi kelautan dan cuaca di Indonesia yang dilakukan Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) menunjukkan memanasnya suhu muka laut yang luas di wilayah perairan Indonesia telah terlihat sejak Juli tahun 2009 dan bertahan hingga kini.

Menghangatnya suhu muka laut di perairan Indonesia mulai terpantau pertengahan tahun lalu, meski ketika itu terjadi El Nino dalam skala moderat. ”Ketika anomali cuaca ini muncul, suhu muka laut di timur Indonesia biasanya mendingin. Namun yang terjadi sebaliknya,” ujar Edvin, yang sebelumnya adalah peneliti cuaca di Badan Pengkajian dan Penerapan Teknologi (BPPT).

Suhu permukaan laut di atas normal ini berlangsung hingga masuk periode musim kemarau tahun ini. Suhu laut yang hangat pada Mei lalu ditunjang oleh munculnya fenomena La Nina di Samudra Pasifik yang diikuti terjadinya Dipole Mode di Samudra Hindia. Kedua fenomena ini mengakibatkan suplai massa udara dari dua samudra itu ke wilayah Indonesia. Berdasarkan data curah hujan yang tinggi sepanjang periode kemarau tahun ini, tidak tampak pola musim kemarau.

Menghangatnya perairan Indonesia akan menyebabkan terbentuknya uap air, lalu menjadi awan dan guyuran hujan di wilayah Nusantara. Apabila berlangsung lama, fenomena ini akan berpengaruh pada kawasan sekitar Indonesia hingga ke lingkup global. Kondisi suhu laut yang hangat, menimbulkan tekanan udara rendah di wilayah Indonesia, hal ini juga menyebabkan massa udara dari subtropis yang bertekanan tinggi masuk ke wilayah tropis yang bertekanan rendah.

Penyimpangan cuaca yang telah berlangsung hampir setahun ini telah berdampak luas ke daerah di luar khatulistiwa Indonesia, berupa kurangnya hujan di daratan Asia Tenggara, seperti Vietnam dan Thailand, serta menimbulkan suhu dingin yang ekstrem di kawasan subtropis. Baca entri selengkapnya »

Iklan

Panasnya Jakarta, Bukan Karena Neraka Bocor

16 Oktober 2014

Beberapa minggu ini media tengah mengambil sebuah headline berita yang cukup menarik yaitu suhu Jakarta yang mencapai 40 derajat celcius yang artinya suhu tersebut tidak seperti biasanya. Dari beberapa cerita mengatakan beberapa hal ini di sebabkan oleh Neraka Bocor . “Ini umpatan di beberapa warung kopi yang sering menjadi bahan candaan kalau panas nya mencapai 40 derajat celcius seperti panas kopi yang sedang di seduh . . ” lalu mengapa panas jakarta bisa mencapai suhu seperti itu. Tidak lain adalah Radiasi sinar matahari yang langsung menuju permukaan di jakarta karena kurangnya uap air dan ruang serah radiasi di jakarta sehingga panas yang di sebabkan oleh radiasi menyelimuti permukaaan.

Radiasi matahari

Radiasi Matahari Ke Bumi  (Sumber: azimuthproject.org)

Radiasi Matahari Ke Bumi (Sumber: azimuthproject.org)

Radiasi Matahari sendiri adalah pancaran energi yang berasal dari proses thermonuklir yang terjadi di Matahari. Energi radiasi Matahari berbentuk sinar dan gelombang elektromagnetik. Spektrum radiasi Matahari sendiri terdiri dari dua yaitu, sinar bergelombang pendek dan sinar bergelombang panjang. Sinar yang termasuk gelombang pendek adalah sinar x, sinar gamma, sinar ultra violet, sedangkan sinar gelombang panjang adalah sinar infra merah.

Jumlah total radiasi yang diterima di permukaan bumi tergantung 4 (empat) faktor.
1.Jarak Matahari. Setiap perubahan jarak bumi dan Matahari menimbulkan variasi terhadap penerimaan energi Matahari 2.Intensitas radiasi Matahari yaitu besar kecilnya sudut datang sinar Matahari pada permukaan bumi. Jumlah yang diterima berbanding lurus dengan sudut besarnya sudut datang. Sinar dengan sudut datang yang miring kurang memberikan energi pada permukaan bumi disebabkan karena energinya tersebar pada permukaan yang luas dan juga karena sinar tersebut harus menempuh lapisan atmosphir yang lebih jauh ketimbang jika sinar dengan sudut datang yang tegak lurus.
3. Panjang hari (sun duration), yaitu jarak dan lamanya antara Matahari terbit dan Matahari terbenam.
4. Pengaruh atmosfer. Sinar yang melalui atmosfer sebagian akan diadsorbsi oleh gas-gas, debu dan uap air, dipantulkan kembali, dipancarkan dan sisanya diteruskan ke permukaan bumi

Cahaya matahari pada permukaan bumi terdiri dari bagian yang langsung dan bagian yang baur. Radiasi langsung datang dari arah matahari dan memberikan bayangan yang kuat pada benda. Sebaliknya radiasi baur yang tersebar dari atas awan tidak memiliki arah yang jelas tergantung pada keadan awan dan hari tersebut (ketinggian matahari), baik daya pancar maupun perbandingan antara radiasi langsung dan baur
Energi matahari yang ditransmisikan mempunyai panjang gelombang dengan range 0,25 mikrometer sampai 3 mikrometer (untuk di luar atmosfer bumi atau extraterrestrial), sedangkan untuk di atmosfer bumi berkisar antara 0,32 mikrometer sampai 2,53 mikrometer. Hanya 7% energi tersebut terdiri dari ultraviolet (AM 0), 47% adalah cahaya tampak (cahaya tampak memiliki panjang gelombang 0,4 mikrometer sampai 0,75 mikrometer), 46% merupakan cahaya inframerah.

Beberapa hal dapat mempengaruhi pengurangan intensitas irradiance pada atmosfer bumi . Pengaruh tersebut dapat berupa:
1.  Pengurangan intensitas karena refleksi (pemantulan) oleh atmosfer bumi
2.  Pengurangan intensitas oleh karena penyerapan zat-zat di dalam atmosfer (terutama oleh O3, H2O, O2, dan CO2)
3.  Pengurangan intensitas oleh karena Rayleigh scattering
4.  Pengurangan intensitas oleh karena Mie scattering

Lalu masalah atsmosfer yang makin terbuka atau di istilahkan oleh efek rumah kaca dan istilah kerennya Global warming menjadi salah satu issue yang sering di angkat. Lalu bagaimana dengan Jakarta? kurangnya ruang serap dan ruang terbuka hijau menjadi panas di Jakarta akhir akhir ini di sebabkan oleh hal tersebut tentunya ada faktor lain juga yang perlu di perhitungkan yaitu musim kemarau.

Ruang Terbuka Hijau Jakarta

Menurut Sarwo Handayani, Kepala Bappeda DKI Jakarta (www.Jakarta.go.id) Pemerintah Provinsi DKI Jakarta telah melakukan penambah ruang terbuka hijau sebanyak 80.89 ha selama 2008 – 2010. Namun jumlah ini masih belum memenuhi standar RTH yang berdasarkan UU No.26 tahun 2007 tentang Penataan Ruang, dimana luas RTH minimal 30% dari luas suatu kota. Nur Febrianti dan kawan kawan tentang Ruang Terbuka Hijau di jakarta menjelaskan tentang penggunaan tata guna lahan di jakarta dapat di lihat pada gambar di bawah ini

Ruang Terbuka Hijau Jakarta 2007 dan 2013 (Nur Febrianti 2013)

Ruang Terbuka Hijau Jakarta 2007 dan 2013 (Nur Febrianti 2013)

Baca entri selengkapnya »


Identifikasi Resiko Tsunami

9 September 2013

Besarnya resiko bencana tsunami yang terjadi di sepanjang pesisir Indonesia, sepertinya layak untuk di buatkan cerita pendek, ya hitung hitung sebagai sebuah mitigasi dan pembelajaran bersama apa itu Tsunami.

Resiko Tsunami

Resiko Tsunami

Pengertian Tsunami

Istilah “tsunami” di adopsi dari bahasa Jepang, dari kata tsu (W) yang berarti pelabuhan dan nami ($£) yang berarti ombak. Dahulu kala, setelah tsunami terjadi, orang orang Jepang akan segera menuju pelabuhan untuk menyaksikan kerusakan yang ditimbulkan akibat tsunami, sejak itulah dipakai istilah tsunami yang bermakna “gelombang pelabuhan”. Selama ini tsunami masih dianggap bencana alam yang tidak membahayakan (underrated hazard), karena kedatangannya yang cukup jarang. Banyak penyebab terjadinya tsunami, seperti gempa bawah laut (ocean-bottom earthquake), tanah longsor bawah laut (submarine landslide), gunung berapi (volcanoes), dan sebab lainnya.

Di antara penyebab itu, gempa bumi bawah lautlah yang paling sering dan paling berbahaya. Longsor bawah laut dengan ukuran longsor sebesar benua juga berbahaya, tapi efektifitas tsunami akibat longsor bawah laut masih jauh di bawah efektifitas tsunami akibat gempa bumi. Gempa bumi bisa disebabkan oleh berbagai sumber, antara lain letusan gunung berapi (erupsi vulkanik), tumbukan meteor, ledakan bawah tanah (seperti uji nuklir), dan pergerakan kulit bumi. Yang paling sering kita rasakan adalah karena pergerakan kulit bumi, atau disebut gempa tektonik.

Berdasarkan seismologi (ilmu yang mempelajari fenomena gempa Bumi), gempa tektonik dijelaskan oleh “Teori Lapisan Tektonik”. Teori ini menyebutkan, lapisan bebatuan terluar yang disebut lithosphere atau litosfer mengandung banyak lempengan. Di bawah litosfer ada lapisan yang disebut athenosphere, lapisan ini seakanakan melumasi bebatuan tersebut sehingga mudah bergerak. Di antara dua lapisan ini, bisa terjadi tiga hal, yaitu lempengan bergerak saling menjauh, maka magma dari perut Bumi akan keluar menuju permukaan Bumi. Magma yang sudah dipermukaan bumi ini disebut lava.

Lempengan bergerak saling menekan, maka salah satu lempeng akan naik atau turun, atau dua-duanya naik atau turun. Inilah cikal gunung atau lembah, atau lempengan bergerak berlawanan satu sama lain, misalnya satu ke arah selatan dan satunya ke arah utara. Ketiga prediksi tersebut akan menimbulkan getaran yang dilewatkan oleh media tanah dan batu. Getaran ini disebut gelombang seismik (seismic wave), bergerak ke segela arah. Inilah yang disebut gempa. Lokasi di bawah tanah tempat sumber getaran disebut fokus gempa. Baca entri selengkapnya »


Subsidence, Turunnya Muka Tanah

14 April 2013
Tanah

Penurunan Permukaan Tanah

Mencoba membagikan tulisan dan semoga bermanfaat, kali ini cerpenist ingin mensharing tentang penurunan muka air tanah yang sering kali terjadi di beberapa kota besar atau di sejumlah daerah. Tulisan ini saya sumberkan dari beberapa tulisan ilmiah yang saya ambil dari beberapa tempat untuk penguatan referensi tulisan ini.

Penurunan muka tanah (land subsidence) merupakan suatu proses gerakan penurunan muka tanah yang didasarkan atas suatu datum tertentu (kerangka referensi geodesi) dimana terdapat berbagai macam variabel penyebabnya (Marfai, 2006). Penurunan muka tanah ini di akibatkan oleh banyak hal seperti pembebanan di atas permukaan, hilangnya air tanah akibat eksploitasi berlebihan, gempa yang mengakibatkan rusaknya struktur tanah,  ketidakstabilan bidang tanah akibat proses tertentu, dan sebagainya.

Penurunan muka tanah ini secara tidak langsung pemaksaan memadatkan struktur tanah yang belum padat menjadi padat. UMumnya terjadi pada daerah yang tadinya berupa rawa, delta, endapan banir dan sebagainya yang di alihkan fungsi tataguna lahannya tanpa melakukan rekayasa tanah terlebih dahulu

Umumnya Kota-Kota Besar di Indonesia berada pada zona limpasan dataran banjir dan Rawa

Jakarta, Semarang, Palembang, Surabaya, dan beberapa kota besar lainnya di Indoesia mengalami permasalahan subsidence ini. memang penurunan terkadang tidak ekstrem setiap tahunnya di beberapa wilayah tetapi bukan tak mungkin bila di biarkan terus menerus akan berdampak munculnya kerugian tidak hanya material tetapi juga korban jiwa.

Fase Penurunan Muka Tanah

Contoh Fase Penurunan Muka Tanah

Menanggulangi Subsidence

Untuk melakukan penanggulangan turunnya muka tanah biasanya dilakukan beberapa tahap penelitian terhadap struktur tanah seperti daya dukung tanah, tebal dan komposisi struktur bawah permukaan, kondisi geologi, dan berbagai hal yang terkait. Cara penangulanggan pun bermacam macam berdasarkan hasil kajian dari faktor yang mempengaruhi subsidence tersebut salah satu penanggulangannya adalah memperkuat daya dukung tanah dengan cara melakukan rekayasa geoteknik seperti suntik semen, melakukan pembangunan pondasi pada struktur tanah yang tepat, melakukan pergantian tanah lunak dengan tanah yang relatif lebih kompak, memanfaatkan penggunaan air tanah seperlunya tanpa melakukan eksploitasi berlebihan. Baca entri selengkapnya »


Mitigasi Banjir Jakarta, Seharusnya Sudah Dari Dulu

23 Desember 2012

Jakarta sebuah kota besar yang tak luput dari masalah banjir ketika hujan datang, penyebabnya pasti yang selalu di salahkan adalah daerah Bogor, yang menjadi penyebab utama sokongan debit sungai yang terus bertambah. Mari kita kenali lagi Jakarta dari sudut pandang geologi.

Jakarta

DKI Jakarta (Wikimapia.org)

Berdasarkan gambaran diatas DKI Jakarta ini ternyata sudah penuh sesak dengan pemukiman tanpa adanya lahan hijau, Jakarta sebagian besar tersusun oleh endapan Aluvium berumur Holosen (quarter). Endapan aluvium yang belum termasifkan sepenuhnya ini berasal dari sedimentasi sungai yang berada di sekitar Jakarta seperti Ciliwung, Cisadane, Cideng, dan lainnya. Sebenarnya Jakarta dahulu memang layak untuk diperhitungkan sebagai kota strategis sebagai kota pelabuhan. Dahulu Jakarta tidak sepadat seperti ini

Kota Batavia di Tahun 1888 (Sumber Wikipedia)

Kota Batavia di Tahun 1888 (Sumber Wikipedia)

pada saat itu juga pemerintah Jakarta membuat kanal-kanal untuk mengurangi genangan akibat limpasan sungai di sekitar Jakarta, ini mitigasi pertama yang dilakukan pemerintah belanda saat itu yang menyadari banyaknya sisi negatif dari banjir yang melanda Batavia saat itu. Baca entri selengkapnya »


Curah Hujan Meningkat, Bencana Longsor Di Sekitar Kita

5 Desember 2012

Musim penghujan mulai memasuki sebagian besar kawasan Indonesia, hampir di semua daerah terjadi peningkatan curah hujan di setiap hari. Indonesia yang notabene nya merupakan wilayah tropis tak terlepas dari kondisi ini.  Sebelum kita melangkah Lebih Jauh, Kita belajar dahulu bagaimana Hujan terbentuk.

Proses Terbentuknya Hujan

terbentuknya hujan di muka bumi di pengaruhi oleh arus konveksi di atmosfer bumi dan lautan. Konveksi adalah proses pemindahan panas ole gerak massa suatu fluida dari suatu daerah ke daerah lainnya. Konveksi bebas dalam atmosfer turut memainkan peran penting  dalam menentukan  cuaca sehari-hari,sedangkan konveksi di lautan merupakan mekanisme pemindahan panas global yang penting

Kedua konveksi di atas dapat digunakan untuk menjelaskan terjadiya awan hujan.Uap air yang berasal dari lautan bersama-sama dengan udara,ternagkat ke  atas akibat adanya gaya tekan hingga mencapai 12 km-18 km dan kemudin membentu awan.Gumpalan awan berdiameter 5 km  mengandung kurang lebih 5 x 108 kg air.Ketika campura uap air dan udara terkondensasi,maka terbentuk hujan yang membebaskan sekitar 108 J energi ke atmosfer (sebanding dengan energi listrik yagn digunakan oleh 100.000 orang dalam sebulan).Udara kemudiantertekan ke bawah bersama-sama dengan air sehingga membentuk curah hujan yang cukup besar.Curah hujan akan melemah seiring dengan berkurangnya energi disuplai oleh campuran air dan udara yang naik ke atas

Proses Siklus Hujan

Siklus Hujan (USGS Modified (http://blog.umy.ac.id))

Tahap-tahap pembentukan kumulonimbus, sejenis awan hujan, adalah sebagai berikut:

TAHAP – 1. Pergerakan awan oleh angin: Awan-awan dibawa, dengan kata lain, ditiup oleh angin.
TAHAP – 2. Pembentukan awan yang lebih besar: Kemudian awan-awan kecil (awan kumulus) yang digerakkan angin, saling bergabung dan membentuk awan yang lebih besar.
TAHAP – 3. Pembentukan awan yang bertumpang tindih: Ketika awan-awan kecil saling bertemu dan bergabung membentuk awan yang lebih besar, gerakan udara vertikal ke atas terjadi di dalamnya meningkat. Gerakan udara vertikal ini lebih kuat di bagian tengah dibandingkan di bagian tepinya. Gerakan udara ini menyebabkan gumpalan awan tumbuh membesar secara vertikal, sehingga menyebabkan awan saling bertindih-tindih. Membesarnya awan secara vertikal ini menyebabkan gumpalan besar awan tersebut mencapai wilayah-wilayah atmosfir yang bersuhu lebih dingin, di mana butiran-butiran air dan es mulai terbentuk dan tumbuh semakin membesar. Ketika butiran air dan es ini telah menjadi berat sehingga tak lagi mampu ditopang oleh hembusan angin vertikal, mereka mulai lepas dari awan dan jatuh ke bawah sebagai hujan air, hujan es, dsb.

Jenis-Jenis Awan Dan Ketinggiannya

Jenis-Jenis Awan Dan Ketinggiannya

Baca entri selengkapnya »


Ada Apa Setelah Gempa Aceh 11 April 2012 ??

21 April 2012

Akibat gempa Aceh tanggal 11 April 2012 kemarin, banyak sejumlah kalangan mempredikikan tentang adanya gempa yang lebih besar lagi terjadi atau istilah nya “Mega thrust” Padang yang kekuatannya berkisar >8 SR. Tapi kapan waktunya? Banyak ahli kegempaan belum tahu secara pasti kapan itu terjadi bisa 10 Tahun lagi ratusan tahun atau bahkan sebentar lagi.

Kedalaman Gempa yang pernah terjadi di Indonesia

Kedalaman Gempa yang pernah terjadi di Indonesia

Posisi lempeng sumatera yang berbatasan dengan daerah penunjaman lempeng samudera menyebabkan daerah ini rawan terhadap pergerakan lempeng. Sehingga tak hayal sekitar 10000 km pantai Indonesia merupakan daerah rawan terjadinya tsunami, mulai dari Sumatera sampai daerah Papua. Pada gambar di bawah ini adalah beberapa penjelasan yang saya ambil mengenai gempa padang di gempapadang.wordpress.com

Baca entri selengkapnya »